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ABSTRACT

Measurement methods aimed at determining material properties through nonlinear wave
propagation are sensitive to artifacts caused by background nonlinearities inherent in the ultrasonic
generation and detection methods.  The focus of this paper is to describe our investigation of nonlinear
mixing of surface acoustic waves (SAWs) as a means to decrease sensitivity to background nonlinearity
and increase spatial sensitivity to acoustic nonlinearity induced by material microstructure.

INTRODUCTION

Ultrasonic techniques that investigate the nonlinear response of a material offer
the potential for measuring certain material properties more effectively than techniques
that assume linear behavior [1]. Consider an initially sinusoidal elastic wave propagating
through a nonlinear medium.  For a bulk wave analysis, an expression involving the
amplitude ratio of the first overtone to the square of the fundamental, β, serves as a
quantitative measure of the strength of harmonic generation.  Microstructural features
such as voids, dislocations and dislocations dipoles deform the crystal lattice causing
changes in the magnitude of β [2-4].  Many researchers have related changes in β to
changes in material microstructure.  For instance, Cantrell and Yost [5] successfully
predicted variations in β caused by precipitate coherency strains in the artificial aging of
aluminum alloy 2024.

Most investigations involving analysis of nonlinear elastic coupling suffer from
sensitivity to background nonlinearities such as those related to the electronic and
electromechanical equipment [6].  Furthermore, methods that involve bulk wave analysis
measure the average contribution to the nonlinear portion of the signal over a distance
equal to the probe beam propagation distance [7].  In order to decrease sensitivity to
background nonlinearities and increase spatial sensitivity we have investigated nonlinear
mixing of surface acoustic waves of different frequencies, ω1 and ω2.  If the difference
frequency is chosen such that it is not equal to ω1 or ω2, a convenient parameter
analogous to β can be defined.  In addition, the wave guiding nature of SAWs allows the
generation and detection process to be performed on the same side of the sample. This in
turn affords enhanced spatial sensitivity since the acoustic propagation distance is not
dictated by the sample’s dimensions.



DEFINING A NONLINEARITY PARAMETER FOR SURFACE ACOUSTIC
WAVES

An expression analogous to β for surface acoustic waves can be derived by
considering the spatial evolution of the fundamental and higher harmonics.  For the
analysis presented in this paper, we used the theoretical approach developed by
Zabolotskaya [8] for plane surface waves in an isotropic material.  The initial particle
velocity profile is represented by
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where ω0 is the fundamental frequency.  As the initial disturbance propagates, the wave
from distorts and is represented by
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The spatial evolution of the amplitude coefficients, Vn, is governed by
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where the propagation distance, x, has been normalized by x0:
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which can be thought of as the distance to shock.  The nonlinear coupling matrix, Sm,n is a
function of both the second and third order elastic constants.  The first summation in Eq.
(3) corresponds to sum frequency generation, the second term corresponds to difference
frequency generation and the last term on the right hand side accounts for frequency
dependent attenuation.

In order to incorporate the effects of wave mixing into the present theory, the
initial velocity profile must be expanded in a Fourier series about the difference
frequency, ∆ω=ω2-ω1.  In Figure 1, the numerical solution to equation (3) is graphically
presented for both a single frequency source and a dual frequency source.  First, note that
the harmonic evolution is scaled by x0 (fully developed nonlinear behavior arises more
quickly for higher frequencies).  For the single frequency source, the decrease in
amplitude of the fundamental is caused both by attenuation and coupling to higher
harmonics.  For the dual frequency source, the two frequencies chosen where ω1 and 2ω1.



Fig. 1.  Top: Harmonic evolution for single frequency source.  Bottom: Harmonic
evolution for dual frequency source.

The amplitude corresponding to ω1 initially increases.  This is due to the fact that ω1 is
also the difference frequency and as a result, this component receives energy from
coupling between ω1 and 2ω1.  The initial rapid decrease in amplitude of the 2ω1

component is a result of this component losing energy to both ω1, the higher harmonics
and attenuation.

When defining a nonlinearity parameter, there are two factors that must be taken
into account.  First, in order to avoid the difficulties associated with measuring absolute
acoustic amplitude, it is convenient too define a parameter that is independent of
amplitude.  Second, a range of applicability must be defined inside of which the
nonlinearity parameter remains independent of amplitude.  In order to define a
nonlinearity parameter suitable for nonlinear mixing of surface acoustic waves first
consider a single frequency source.  The fundamental and the first overtone are shown in
Figure 2.  For small nondimensional propagation distances, the slope of the first overtone
is given by,
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where F1 is a function of frequency, density and the second order elastic constants.  The
amplitude of the fundamental initially remains roughly constant, losing energy primarily

Fig. 2.  Top: Decay of the fundamental amplitude for small propagation distances.
Bottom: Linear growth of first overtone amplitude for small propagation distances.

to attenuation.  Thus, the nonlinearity parameter suggested by this setup is defined as the
slope of the first overtone amplitude divided by the square of the fundamental amplitude.
It should be noted that this parameter is independent of amplitude for small
nondimensional propagation distances, after which attenuation and population of higher
harmonics must be taken into account.

For a dual frequency source, (i.e. wave mixing) it is important to judiciously pick
the two fundamental frequencies.  If for instance, ω1 and 2ω1 are chosen as shown in the
bottom graph in Figure 1, a ratio independent of amplitude can not be defined.  This is
due to the fact that the amplitude corresponding to ω1 at small propagation distances is a
function of ω2 since ω1 is equal to the difference frequency.  However, if ω1 and ω2 are
chosen to be equal to 2∆ω and 3∆ω respectively, a nonlinearity parameter independent of
amplitude can be defined.  The two fundamentals, the sum frequency, the difference
frequency, and the two second harmonics are shown in Figure 3.  As was the case for the
single frequency source, the amplitude corresponding to both fundamental frequencies
remains roughly constant for small propagation distances.  From signal to noise
considerations, the slope of the sum frequency is chosen to define a nonlinearity
parameter.  The slope of the sum frequency is given by
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Fig. 3.  Top: Initial decay of the amplitude corresponding to both fundamental
frequencies.  Bottom:  Initial linear increase for the amplitudes corresponding to the sum
and difference frequencies as well as both second harmonics.

where again F2 is a function of frequency, density and the second order elastic constants.
The nonlinearity parameter suggested by a dual frequency source would be proportional
to S23.

PROPOSED EXPERIMENT

We have investigated a number of generation techniques ranging from contact
transduction to laser transduction.  Due to enhanced reproducibility and easy frequency
tuning, our current efforts are focussed on laser generation.  A narrow band surface
acoustic wave was produced by interfering two generation beams at the surface of the

0 0.01 0.02 0.03 0.04 0.05 0.06
0.9992

0.9994

0.9996

0.9998

 1.0000

0 0.01 0.02 0.03 0.04 0.05 0.06
0

0.01

0.02

0.03

0.04

Vn

x

x

Vn
2∆ω

3∆ω

2∆ω + 3∆ω
           4∆ω
           6∆ω
2∆ω - 3∆ω



sample.  The fringe spacing, which dictates the center frequency of the surface acoustic
wave, is given by

)/sin( 22 ϕ
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where λ is the optical frequency and φ is the angle between the two generation beams.  A
surface acoustic wave generated in this fashion is shown in figure 4.  The out-of-plane
displacement was detected using a photorefractive interferometer [9].  A Nd:YAG pulsed
laser, pulse duration 10 ns, provided the two generation beams.  The fringe spacing is
approximately 600 µm, which for the aluminum sample used corresponds to a center
frequency of roughly 4.7 MHz.

Fig. 4.  Out of plane displacement of laser generated narrow band surface acoustic wave.

In order to mimic the conditions imposed by the present theory, an additional narrow-
band surface acoustic wave will be generated.  The second set of generation beams will
be derived from the second harmonic of the Nd.YAG laser.  This is done to ensure that
any additional optical interference produced at the surface of the sample will be in the
form of a traveling wave and will not contribute to the signal at a frequency
corresponding to the fringe spacing of the traveling diffraction grating.
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CONCLUSIONS

Issues involving sensitivity to background nonlinearity and spatial sensitivity as related to
nonlinear acoustics has been discussed.  We proposed nonlinear wave mixing of two
surface acoustic waves at different frequencies to enhance spatial sensitivity and reduce
sensitivity to background nonlinearities.   It was shown that if the difference frequency is
chosen such that it is not equal to ω1 or ω2, a convenient parameter analogous to β can be
defined.  Initial experimental efforts directed at measuring the nonlinearity parameter
associated with wave mixing have been outlined.

REFERENCES

1. Buck, O., Review of Progress in QNDE 9B, edited by D. O. Thompson and D. E.
Chimente., Plenum Press, New York, 1990, pp. 1677-1684.

2. Ostrovsky, L. A., J. Acoust. Soc. Am. 90, 3332 (1991).
3. Suzuki, T., Hikata, A., and Elbaum, C., J. Appl. Phys. 35, 2761 (1964).
4. Cantrell, J. H., and Yost, W. T., Philos. Mag. 69, 315 (1994).
5. Cantrell, J. H., and Yost W. T., J. Appl. Phys., 81, 2957 (1997).
6. Sutin, A. M., and  Donskoy, D. M., in Nondestructive Characterization of Materials

VIII, edited by R. E. Green, Plenum Press, New York, 1993, pp. 131-136.
7. Cain, C. A., J. Acoust. Soc. Am., 80, 28 (1986).
8. Zabolotskaya, E. A., J. Acoust. Soc. Am., 91 (1992).
9. Monchalin, J. P., Lasers and Electro-Optics Conference, Technical Digest Series,

Vol.6, San Francisco, 1998, pp. 3-8.


